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DWELL TIME FOR AN ASYMMETRIC ONE-DIMENSIONAL BARRIER
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We calculate the dwell times for incident particles comming from both the right and
from the left of an asymmetric one-dimensional barrier. We prove that these times
have a common contribution proportional to the density of states and an asymmetric
contribution that depends on the reflection amplitudes from the right and from the left,

which cancels in the symmetric case.

THERE HAS BEEN a great deal of interest in the
study of the influence of the asymmetry of a potential
barrier on the electronic transport properties and, in
particular, on the resonant tunneling through a poten-
tial barrier [1-4]. In this case the mean dwell time Tp,
which is defined as the average time that the particle
spends within the barrier, independently of whether it
is ultimately transmitted or reflected, is an important
time scale.

The dwell time was first introduced by Biittiker {5]
as the ratio of the accumulated number of particles in
the barrier to the incident flux:
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where the integral extends over the barrier, and 2k
is the incident flux (we will take e = ¢ = A = 1, and
my = 1/2 for the electron mass). y(x) is the steady-
state scattering solution of the time-independent
Schrodinger equation, whose energy dependence is
not written explicitly. '

As shown in papers [6,7] the Biittiker’s expression
for a dwell time T is correct in all case and does not
depend on the approaches, which is usually the case in
the theory of tunneling problems (see i.g. [8,9]. On the
other hand, with the expression of the dwell time de-
fined as a weighted average between the transmission
and reflection times

Tp=TTr+ Rtp (2)
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we have a many problems (see, e.g. [7]). For example, .
the phase time for transmission and reflection of Bohm
and Wigner do not satisfy Eq. (2).

Our previous results [9], where we determine the
dwell time for a symmetric barrier in terms of the
Green function, and prove that it is proportional to
the density of states, also are in contradiction with the
dwell time defined by Eq. (2).

The purpose of this work is to calculate directly the
dwell time from Eq. (1) for the case of a general one-
dimensional asymmetric barrier in terms of the density
of states of system.

Let us consider a particle moving along the x-
direction in the presence of an arbitrary potential
barrier ¥ (x) in the interval (0, L). The potential is
zero outside the barrier. Our aim is to calculate the
dwell time, given by Eq. (1), for particles coming both
from the left and from the right. We evaluate Eq. (1)
in three steps. First, we incorporate the fact that the
wavefunction appearing in this equation is a solution
of the Schrddinger equation. Second, we rewrite the
wavefunctions in terms of Green functions. And fi-
nally, we express the Green functions in terms of the
density of states and the reflection coefficients.

First of all, we can trivially rewrite the wavefunction
W(x), which is a solution of the Schrodinger equation,
as:
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Then the modulus square |y (x)|? takes the following
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Integrating this expression and dividing by the inci-
dent flux, 2k = 2+/E, we obtain:
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Here the prime signifies the derivative with respect to
the x coordinate. This expression is formally the same
for particles incident from the left or from the right,
but we have to remember that the corresponding wave-
functions will not be the same. Garcia-Calderdn and
Rubio [10] arrived at the same result by a completely
different method.

Our second step is to rewrite Eq (5) in terms of the
retarded Green function G{x, x") (GF) of the system,
that we will use throughout the communication. The
wavefunction ¢/(x) at energy E is related to the GF
through the expression:

o ViImvE Y if x> X
G(X’x)={mv() “p) ifxsy - ©

where v(E) is the density of states per unit energy
and per unit length. At coinciding coordinates, this
expression reduces to the well-known result G(x, x) =

E)|w(x)|?. From Eq. (6) we can obtain the left-
hand side and right-hand side derivatives of the GF
with respect to coordinates, which have to be distin-
guished due to discontinuity: '

GxF0,x) = i% + %G' (x, x). 7
Here the dot signifies the derivative with respect to
the first argument and the prime the derivative with
respect to the two arguments simultaneously. Taking
into account these expressions we can write the first
factor in the RHS of Eq. (5) containing 9/9F as:
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where 6(x, E) is a phase function and is defined by
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A similar expression is valid for the other factor in
Eq. (5) containing 8/9E. Thus, the dwell time can be
written in terms of GF as:
0
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As for the wavefunction, the GF G(x, x") depends on
whether the particle arrives at the barrier from the left
or from the right.

The GF for an arbitrary stepwise barrier was ob-
tained by Aronov et al. [11] and their results can be
generalized to an arbitrary barrier by considering an
infinite number of steps. This technique was already
applied by us [13] to obtain the tunneling time of an

arbitrary barrier. After some cumbersome algebra we
arrive at;

O(x, E) = exp {—
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The subscript - indicates that the particle is comming
from the left. R and R, are the reflection amplitudes
from the left and from the right, respectively, R is the
modulus of these amplitudes R = |R-| = |R..|, and ¢
is the transmission amplitude, which is independent of
the incident direction as can be deduced from the time-
reversal and current conservation requirements [12].
A similar expression to (11) holds when the particle
is coming from the right, interchanging R- and R..
We will refer to this case with the subindex +. The
reflection and transmission amplitudes can be calcu-
lated with any of the available techniques, such us the
transfer matrix technique or the characteristic deter-
minant method.

We showed [13] that the first term on the RHS of the
last equation is proportional to the density of states.
Then, we finally arrive at the following expression for
the dwell time:

¥ = nLv(E)

+ 41_ch { %1 % + llc(R - Ri)}. (12)
For a symmetrlc Botentlal we have R. = R, and
we obtain T v(E), in agreement with our
previous result [9, 14].
For an asymmetric barrier, it is easy to check that
the contribution from the asymmetry is the opposite
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for particles comming from the left and from the right.
Then we find that:

I S 0 ()
V(E)—z—ﬁ(T_ + 7). (13)

This result was obtained in a much wider context by
Iannaccone [15].

We have obtained an exact and general expression
of the dwell time for an asymmetric barrier in terms
of the density of states and the reflection amplitudes
from the left and from the right.
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